
FlowDriveNet: An End-to-End Network for Learning Driving Policies
from Image Optical Flow and LiDAR Point Flow

Shuai Wang1, Jiahu Qin1, Menglin Li1 and Yaonan Wang2

Abstract— Learning driving policies using an end-to-end
network has been proved a promising solution for autonomous
driving. Due to the lack of a benchmark driver behavior
dataset that contains both the visual and the LiDAR data,
existing works solely focus on learning driving from visual
sensors. Besides, most works are limited to predict steering
angle yet neglect the more challenging vehicle speed control
problem. In this paper, we propose a novel end-to-end network,
FlowDriveNet, which takes advantages of sequential visual
data and LiDAR data jointly to predict steering angle and
vehicle speed. The main challenges of this problem are how to
efficiently extract driving-related information from images and
point clouds, and how to fuse them effectively. To tackle these
challenges, we propose a concept of point flow and declare that
image optical flow and LiDAR point flow are significant motion
cues for driving policy learning. Specifically, we first create
an enhanced dataset that consists of images, point clouds and
corresponding human driver behaviors. Then, in FlowDriveNet,
a deep but efficient visual feature extraction module and a point
feature extraction module are utilized to extract spatial features
from optical flow and point flow, respectively. Additionally, a
novel temporal fusion and prediction module is designed to
fuse temporal information from the extracted spatial feature
sequences and predict vehicle driving commands. Finally, a
series of ablation experiments verify the importance of optical
flow and point flow and comparison experiments show that
our flow-based method outperforms the existing image-based
approaches on the task of driving policy learning.

SUPPLEMENTARY MATERIAL

The supplementary video is provided at https://
youtu.be/cPjQcE_fDi4 and the project’s dataset, code
and trained models will be made available at https://
github.com/wsustcid/FlowDriveNet.

I. INTRODUCTION

Traditional autonomous driving system usually consists
of a series of complicated modules, such as localization,
perception, planning, control, etc [1], [2]. However, the tight
internal dependencies between these modules increase the
risk of the system, and a small error from a single module
may trigger a chain reaction and eventually cause the failure
of the entire task [3]. In order to reduce the modules’ internal
dependencies, some end-to-end learning-based methods have
been proposed, which aims to learn driving policies directly
from sensory inputs and has achieved impressive results in
recent years [4].

1S. Wang, J. Qin and M. Li are with the Department of Automation,
University of Science and Technology of China, Hefei 230027, China.
jhqin@ustc.edu.cn

2Y. Wang is with the College of Electrical and Information Engineering,
Hunan University, Changsha 410082, China.

Point Feature Extraction Module

FlowDriveNet

Visual Feature Extraction Module

Te
m

p
o

ra
l F

u
si

o
n

 a
n

d
 

P
re

d
ic

ti
o

n
 M

o
d

u
le

Driving 
Policy 

LearningLiDAR
Input

Visual
Input

Fig. 1. An illustration of our driving policy learning system. FlowDriveNet
takes image sequences combined with optical flow and point cloud se-
quences combined with point flow as inputs. The driving policies are learned
from human driver behaviors to predict the vehicle driving commands.

Most end-to-end driving systems [5], [6] have shown
satisfactory results in the task of predicting steering angle
from visual sensors. However, current driving models have
only ten or so layers while the state-of-the-art (SOTA) visual
perception models [7], [8], [9] in the field of computer
vision have been developed up to hundreds of layers, which
hinders the further improvements of the model performance.
In addition, in order to make the vehicle acquire the full self-
driving capability, the driving model has to predict not only
the future steering angle but also the speed control command.
The later is much more difficult and has not been well solved
in the existing vision-based end-to-end learning systems.

Intuitively, speed control requires the driving model to
estimate the relative motion of the vehicle and its surrounding
objects from current or historical data. Thus, it is a challeng-
ing task for the current models that infer speeds solely from
visual images [10], [11]. Different from visual sensors, Light
Detection And Ranging (LiDAR) sensor directly provides
precise geometrical information of the 3D environments by
collecting point cloud data. Thus predicting speeds from
point clouds will be a much simpler matter. However, point
cloud data has not been well used in the current end-to-end
driving systems, partly because of the lack of LiDAR datasets
which can be used for driving policy learning.

In this paper, we propose a novel end-to-end driving
policy learning network named FlowDriveNet, which aims
to simultaneously predict steering angle and vehicle speed
from both image sequences and point cloud sequences. First,
image optical flow and LiDAR point flow are computed
from the consecutive input frames to provide the model
with more explicit motion cues. Second, a deep but efficient

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 716 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 30, 2020.



Visual Feature Extraction (VFE) module and a Point Feature
Extraction (PFE) module are designed to extract driving-
related features from the multimodal input data. Then, a
Temporal Fusion and Prediction (TFP) module is added to
the end of the network to explore the temporal correlations
from the extracted features and output the vehicle driving
control commands. Finally, the contributions of each module
are verified by the ablation study. The contributions of this
paper are summarized as follows:

• We create a benchmark dataset that contains time-
synchronized image sequences, point cloud sequences
and corresponding human driver behaviors to facilitate
the research of the LiDAR-based driving policy learn-
ing.

• To the best of our knowledge, this is the first work
that combines optical flow and point flow as inputs to
learn driving policies in an end-to-end manner, which
simultaneously solves the task of steering prediction and
speed prediction in one network.

• The rich ablation experiments verify the importance of
optical flow and point flow. In addition, comparison
experiments and the model visualization results demon-
strate the superiority and reliability of our model.

The remainder of this paper is organized as follows.
Section II reviews the development of related works in the
past years and Section III states the dataset used in this paper.
Section IV presents the architectures of our proposed model.
Ablation study and comparison experiments are shown in
Section V and this work is concluded in Section VI.

II. RELATED WORK

End-to-end driving system adopts the idea of behavioral
cloning that aims to construct a direct mapping from sensory
inputs to driving actions by learning from human driver
behaviors. Early works mainly focus on predicting steering
angle from instantaneous visual images, and the first work
can be traced back to the work of ALVINN (Autonomous
Land Vehicle In a Neural Network) [12] in the late 1980s.
ALVINN followed the connectionist approach and built a
3-layer neural network for the task of road following.

With the development of deep learning, LeCun et al.
successfully transfer their LeNet [13] which originally de-
signed for handwritten digit recognition to an end-to-end
obstacle avoidance system [14]. In 2016, the end-to-end
driving system began its golden age with the impressive
results achieved by the NVIDIA’s PilotNet [5], which learns
to drive in highways and even unpaved roads by predicting
steering commands solely from a single front-facing camera.
Following this idea, [15] controlled a quadrotor following
forest trails by training a similar Convolutional Neural Net-
work (CNN). Then in 2018, [16] tried to predict steering
angles from the synchronized event frames captured by the
event camera and also provided their datasets in [17], [18].

More recently, a number of researches have recognized
the importance of Spatio-Temporal (ST) data. [6] took the
ST data as inputs by computing optical flow from video
clips and achieved the SOTA results on the task of steering

prediction. Similarly, [19] encoded the ST information in the
image sequences by using the Convolutional Long Short-
Term Memory (Conv-LSTM) layers, and the future driving
actions were also used to guide the network training.

However, all the aforementioned works only achieve
steering prediction, which is not sufficient for the vehicle
control. Speed commands are indispensable in real traffic
scenes. In order to predict speed commands of the car,
the driving model needs to capture the motion information
of the scene. Thus, [10] and [11] utilized ST-Conv, Conv-
LSTM and LSTM to extract spatial and temporal visual
cues from compiled video frames, and [20] predicted steering
angle and vehicle speed from surround-view cameras to get
more complete description of the dynamic environments.
Obviously, inferring the motion of the objects from visual
sensors is not a direct and efficient way.

Instead of predicting the desired steering angle or vehicle
speed that can be directly utilized to the vehicle control,
some works also tried to predict the intermediate affordance
information [21], a distribution of the future feasible actions
(such as straight, stop, left turn and right turn) [22], or a
collision probability of the vehicle [23] to build a vehicle
controller. However, LiDAR sensor has not been used in
all the above-mentioned works and the problem of the joint
prediction of steering angle and speed has not been perfectly
solved.

III. DATASET

A. Udacity Dataset

Udacity CH21 is a popular vision-based driver behavior
dataset. Though LiDAR data is also contained in this dataset,
it has not been utilized in current end-to-end driving systems,
since there is no research or relevant tools that try to extract
LiDAR data from the ROS (Robot Operating System) bag
files provided in CH2. Besides, the raw point cloud in CH2
cannot be directly used for driving policy learning, and the
main difficulty lies in the following three aspects:

Distortion The accuracy of the point position in the point
cloud is critical to driving policy learning. However, the point
cloud in CH2 is distorted caused by the bump in the road
or vehicle jittering, which may interfere with the learning of
driving policies.

Noise and Range Diversity The cloud boundary in CH2
ranging from [-140, -120, -15] to [140,120,30] in [x,y,z]
directions, respectively, which bring additional challenges to
the model perception since too many isolated and outlier
points increase the noise of the LiDAR data.

Density Variation The number of points in the raw point
cloud of CH2 ranging from 7500 to 27000, which hinders
the application of PointNet-based method [24], [25] which
requires a fixed number of points as input.

B. Udacity CH2-LiDAR

Based on the above discussion, the raw point cloud data
in CH2 need to be preprocessed to meet the requirements

1https://www.github.com/udacity/self-driving-car

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 716 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 30, 2020.



(a). Raw Cloud

Segment

ground

Estimate

normal

Rotate

cloud

Remove

outlier Down- or

Upsampling

(b). Ground Plane (c). Corrected Cloud (d). Outlier Removed Cloud (e). Sampled Cloud

(a). Raw Cloud

Ground
segmentation

Normal
estimation

Cloud 
rotation

Outlier
Removal Downsampling

Upsampling

(b). Ground Plane (c). Corrected Cloud (d). Outlier Removed Cloud (e). Sampled Cloud

Fig. 2. The point cloud preprocessing pipeline. (a). The raw point cloud is rendered by the height of the point. (b). The points on the ground plane
exhibiting different colors mean that the point cloud has distortion. (c). The corrected points are visualized with green color. (d). The red points are the
outlier and the isolated points. (e). Finally, the sampled points are shown in green.

Fig. 3. Samples of driving images (first row) and associated point clouds
(second row) in the CH2-LiDAR dataset. Apparently, the LiDAR data has
a better description of the 3D environments than the visual data.

of driving policy learning. The cloud preprocessing pipeline
used in this paper is depicted in Fig. 2.

Cloud Correction For each raw point cloud extracted
from CH2, we employ a cloud correction procedure to reduce
distortions. First, we segment a rough ground plane by se-
lecting the points within a specific height range. Specifically,
we select Pz ∈ [-5, -1.5] where the z axis perpendicular to the
ground. Then we adopt the RANSAC (RANdom SAmple
Consensus) [26] algorithm to estimate the normal vector of
the ground plane, which should align with the Z axis of
the LiDAR coordinate. Thus the rotation matrix between the
normal vector and Z axis can be computed. Finally, the raw
cloud can be corrected by rotating it with the rotation matrix.

Outlier Removal To remove the outlier points, we crop
the corrected cloud within the range of [-60,60], [-30,30], and
[-5,10] along with the x,y,z axis, respectively. Furthermore,
when the standard error of the distances between a point and
its 5 nearest neighbors larger than a predefined threshold, the
point is deemed as isolated and will be removed.

Cloud Sampling To make all the final point cloud has
the same number of points (20000 points in our dataset), we
randomly upsampling or downsampling the outlier removed
cloud according to the number of points in each point cloud.

Finally, we obtain the processed driving dataset, named
CH2-LiDAR, which contains curated driving images, cor-
rected point clouds, synchronized control messages, and
other sensor information. As shown in Fig. 3, LiDAR data
has a better description of the 3D environments than visual
images. In Addition, the comparison of CH2-LiDAR with the
existing public driving datasets is demonstrated in Table I.

Fig. 4. Visualization of optical flow (left) and point flow (right). The
motion of pixels and points is represented by the green arrow.

TABLE I
COMPARISON OF EXISTING PUBIC DRIVING DATASETS.

Datasets Image LiDAR GPS & IMU Behaviors

Drive360 3 7 3 3

Comma.ai 3 7 3 3

BDDV 3 7 3 7

Cityscapes 3 7 3 7

KITTI 3 3 3 7

CH2-LiDAR 3 3 3 3

IV. METHODOLOGY

FlowDriveNet can be conceptually separated into three
complementary modules, a VFE module that benefits from
the SOTA visual perception model [8], a PFE module that
built upon the popular point cloud learning network [24],
[25], and a well-designed TFP module to fuse the ST features
extracted from above two modules.

A. Input preprocessing

The sequential inputs should be processed to get the
optical flow and point flow before being fed into the VFE
module and the PFE module, respectively.

Image sequence with optical flow We first load an image
sequence in the gray-scale format to compute the optical
flow between two successive images. Gunner Farneback’s
algorithm [27] is used to get the dense optical flow, which
is a 2D vector field for all the pixels of the image. As
visualized in Fig. 4, the green arrow shows the movement of
the pixel. Then for each image and its corresponding optical
flow, the top 100 rows are cropped to remove the useless sky

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 716 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 30, 2020.



…

…

LS
TM

LS
TM

C

FC
=1

2
8 FC

=3
2

Angle

Speed

Conv Bottleneck Layer Avg. PoolingBN+ReLU+Conv Global Avg. Pooling [(1x1)/1,Conv +ReLU]xN+Max Pooling FC Layer C Channel-wise ConcatenationMax Pooling

Fig. 5. FlowDriveNet architecture. This model takes both image sequence with optical flow and point cloud sequence with point flow as input. A densely
connected convolutional VFE module (upper part of the figure) and a hierarchical PFE module (lower part of the figure) are applied to these two kinds of
sequential inputs, respectively. Then, the extracted temporal visual features and point features are respectively processed by an LSTM layer. Finally, three
fully connected layers are stacked together to fuse these two kinds of information and predict driving commands.

pixels. Finally, the preprocessed gray-scale image sequences
are stacked with their optical flow and resized to the shape of
200×200. The final visual input is a 4D tensor with the shape
of (T,200,200,3) where T is the length of the sequence.
Input normalization is also performed by subtracting the
mean and dividing the standard deviation.

Point cloud sequence with point flow Similar to the
optical flow, we also expect to find the explicit motion
cues of the surrounding objects from the rich geometrical
information of the 3D environment provided by the LiDAR
point cloud. Thus, based on the preprocessed point cloud
described in Section III-B, for each point of the point cloud
perceived at time t, we search the closest point from its
previous point cloud at time t-1 and compute their euclidean
distance, and the distance is defined as the point flow. As
shown in Fig. 4, the movements of the points are explicitly
represented by the point flow. Finally, the preprocessed
point cloud sequence with the length of T is stacked with
their point flow and form a 3D tensor with the shape of
(T,20000,4).

B. Visual Feature Extraction Module

As depicted in Fig. 5, the multimodal visual input (image
sequences and their optical flow) are firstly processed by
a 7×7 Conv layer with stride 2 to detect some driving-
related low-level features and a 3×3 max pooling layer with
stride 2 to reduce the spatial size of the feature maps. Then
three dense blocks are used to learn more abstract features.
Each dense block is composed of 4 densely connected
bottleneck layers. The bottleneck layer is designed as BN-
ReLU-Conv(1×1)-BN-ReLU-Conv(3×3), in which the batch
normalization and the 1×1 Conv layer with 128 output
filters are added before the 3×3 Conv layer to improve the
network efficiency. Dense connection denotes that each layer
in the dense block takes all the preceding feature maps as
input, which strengthens feature propagation and encourages
feature reuse. Between every two dense blocks, a transition
layer is utilized to further reduce the depth and spatial size

of feature maps by setting the number of output filters in
the 1×1 Conv layer as half number of input feature maps
and the pooling stride as 2 in the 2×2 average pooling layer.
Finally, a global average pooling layer is used to aggregate
the extracted ST features with the shape of (T,5,5,240) in
the spatial domain, and generate a temporal feature with the
shape of (T,240) to be further processed by the TFP module.

C. Point Feature Extraction Module

As shown in Fig. 5, the multimodal LiDAR input with
the shape of (T,N,3+1) is created from T frames of pre-
processed N unordered points with 3 position coordinates
and 1 point flow value. Initially, the PFE module takes this
3D tensor as input, and a sampling layer selects 1024 points
by applying the Farthest Point Sampling (FPS) algorithm
on each frame. Intuitively, each selected point defines the
centroid of a local region. Then for each frame, the grouping
layer constructs 1024 overlapped neighborhood balls with
the radius R1 = 2.5 and sampled 32 local points in each ball.
These local points combined with their point flow values are
further processed by a pointwise feature learner. Specifically,
the pointwise feature learner uses a set of weight shared
point-wise perceptrons to learn a spatial encoding of each
local region and applies the max pooling operation along the
local point axis to make the learned local feature invariant
to point permutation. The above process is repeated twice
by setting the sampling number N2 = 521,N3 = 1, and the
grouping radius R2 = 5.0,R3 = ∞ to extract higher-level
features in a hierarchical way. Finally, a fully connected layer
with a size of 240 is utilized to generate a temporal feature
with the shape of (T,240) to be further used in the TFP
module.

To encourage feature reuse, the relative coordinates of
points in each local region are used by applying the coordi-
nate transform, in which the centroid point is taken as the
origin of the local coordinate system.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 716 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 30, 2020.



TABLE II
PERFORMANCE OF DIFFERENT COMBINATIONS OF PERCEPTION MODULES WITH VARIOUS INPUT VARIATIONS.

Module
Input Variation Evaluation Metrics

Gray Image Optical Flow Point Cloud Point Flow Sequence Angle Speed Average RRR222

Constant baseline – – – – – 0.1065 0.1858 0.1462 -0.384

VFE 3 – – – – 0.0693 0.1544 0.1119 0.178

VFE 3 3 – – – 0.0431 0.1431 0.0931 0.394

VFE 3 3 – – 3 0.0367 0.1568 0.0968 0.312

PFE – – 3 – – 0.0745 0.1914 0.1330 -0.183

PFE – – 3 3 – 0.0558 0.0914 0.0749 0.638

PFE – – 3 3 3 0.0546 0.0554 0.0550 0.792

VFE+ PFE + TFP 3 3 3 3 3 0.0295 0.0507 0.0401 0.896

TABLE III
COMPARISON RESULTS OF FLOWDRIVENET WITH EXISTING DRIVING MODELS. RGB, GRAY, XYZ, F, -T REPRESENT COLOR IMAGE, GRAY-SCALE

IMAGE, POINT CLOUD, FLOW DATA AND SEQUENTIAL DATA, RESPECTIVELY. AUG MEANS DATA AUGMENTATION IS UTILIZED.

Module Input Modal
Evaluation on Val. Set Evaluation on Test Set Num. Num.

FPS
Angle Speed Angle Speed Average RRR222 Layers Params.

PilotNet [5] RGB 0.0587 – 0.0575 – – 0.708 10 1.6×106 282

MSTNet [6] GRAYF-T 0.0033 – 0.0550 – – 0.734 9 2.4×106 279

PointNet [24] XYZ – 0.0555 – 0.1702 – -0.483 9 8.1×105 106

DroNet [23] GRAY 0.0037 0.0115 0.1171 0.1747 0.1459 -0.386 9 333...222×××111000555 369

FlowDriveNet (Aug) GRAYF-XYZF-T 0.0165 0.0262 0.0295 0.0445 0.0370 0.912 35 1.5×106 22.8

D. Temporal Fusion and Prediction Module

In the TFP module, the extracted temporal visual feature
and point feature are separately processed by an LSTM layer
to capture the motion of the vehicle and its surrounding
objects. Then the outputs of the two LSTM layers are
concatenated together and are further fused by two fully
connected (FC) layers. Finally, an FC layer with 2 output
units predicts the steering angle and speed as the vehicle
control commands.

It is worth mentioning that we also tried to fuse the visual
and the point feature first, and then use an LSTM layer to
extract motion cues from the fused feature, which performs
worse than the current scheme.

V. EXPERIMENTS

In this section, we evaluate FlowDriveNet with extensive
experiments on the CH2-LiDAR dataset.

A. Ablation Study

Model Configurations To analyze the improvements
gained by each type of motion cues combined with our
refinement modules, we first build a constant baseline that
always outputs 0 as the model prediction value. Then we
train the VFE module with three types of input variations,
i.e., the single-frame gray image, the single-frame gray image
stacked with its optical flow, and the gray image sequence
combined with optical flow. Besides, we utilize an FC layer

with two output units to predict driving commands after the
VFE module and an LSTM layer is included when the mod-
ule adopts sequential inputs. For the PFE module, we apply
a similar configuration and take the single-frame 3D point
cloud, the single-frame 3D point cloud stacked with its point
flow, and the point cloud sequence combined with point flow
as the module inputs, respectively. Finally, FlowDriveNet that
combines the TFP module with the VFE module and PFE
module is trained by taking image sequences and point cloud
sequences stacked with their flow data as inputs.

Training Configuration All the models are trained with-
out data augmentation and evaluated on the test set with
the metric of Root Mean Square Error (RMSE) and R-
Squared (R2). The Adam optimizer [28] with the parameter
of β1 = 0.9, β2 = 0.999, ε = 10−8 is utilized to minimize the
loss of Mean Squared Error (MSE) and the initial learning
rate is set to 10−4. The length of input sequences used in
our experiments is 5. To prevent overfitting, the training is
stopped when the evaluation metric on the validation set has
stopped improving for 20 consecutive epochs.

Results From the results presented in Table II, we can
draw three main conclusions. (a). The explicit motion cues
provided by the optical flow and point flow are respectively
beneficial for the prediction of steering angle and vehicle
speed. (b). The temporal information provided by the se-
quential inputs can further improve the module performance.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 716 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 30, 2020.



Fig. 6. The prediction results of FlowDriveNet compared with the recorded human driving behaviors. Apparently, all the driving behaviors have been
learned successfully by our driving model, but the speed prediction needs to be further improved to make vehicle speed control as smooth as the steering
control.

(a) Input Image (b) Steer’s Heatmap (c) Steer’s Segmentation (d) Speed’s Heatmap (e) Speed’s Segmentation

Fig. 7. The model visualization results on the test data. We use the activation heatmap and segmented image (inactive pixels are painted in black) to
visualize the driving model’s attention. As shown in (b) and (c), on the task of steering prediction, the lane lines activate our driving model more than the
rest of the image. (d) and (e) show that both the surrounding vehicles and lane lines contribute to the speed prediction.

(c). With the help of three complementary visual perception
module, LiDAR perception module, and temporal fusion
module, our FlowDriveNet successfully combines the ben-
efits of optical flow, point flow, and sequential inputs.

B. Comparison Experiments

To further verify the advantages of FlowDriveNet, we
compare our model with the SOTA vision-based driving
models [5], [6], [23] and the popular point cloud learn-
ing network [24]. As shown in Table III, FlowDriveNet
outperforms the other driving models on the evaluation
metrics of the test data while other models have a better
performance on the validation data, which also demonstrates
that our model is indeed learning driving policies rather than
fitting data. Although FlowDriveNet performs poorly on the
inference time, it can also ensure the driving system running
in real-time since the sampling frequency of the LiDAR
sensor cannot be higher than 10HZ. The prediction results of
FlowDriveNet on the test data are displayed in Fig 6, which
shows that the human driving policies have been learned
successfully by FlowDriveNet but the speed control needs
to be further improved to make it as smooth as the steering
control.

C. Qualitative Results

To better understand the driving policies learned by our
FlowDriveNet, we employ the model visualization technique
presented in [29], [30]. As shown in Fig. 7, the lane lines are
the most important driving information, which contribute to
both the steering and the speed prediction. In addition, the
model also concentrates on the surrounding vehicles when
making decisions on the speed control, which is consistent
with human driving behaviors.

VI. CONCLUSION

This paper investigates the benefits of learning driving
policies from optical flow and point flow. A benchmark
driving behavior dataset named CH2-LiDAR is firstly created
based on the Udacity-CH2 dataset to promote the research
of learning driving from LiDAR data. Besides, our Flow-
DriveNet solves the challenging problem of jointly predicting
steering angle and vehicle speed in one network and verifies
the importance of spatial and temporal motion cues extracted
from the multimodal sequential inputs. In the future, we will
deploy our driving model to a real self-driving car and further
improve the model performance on the speed prediction.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 716 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 30, 2020.



REFERENCES

[1] Levinson, Jesse, Jake Askeland, Jan Becker, Jennifer Dolson, David
Held, Soeren Kammel, J. Zico Kolter et al, “Towards fully autonomous
driving: Systems and algorithms,” In 2011 IEEE Intelligent Vehicles
Symposium (IV), 2011, pp. 163-168.

[2] Yurtsever E, Lambert J, Carballo A, et al., “A survey of autonomous
driving: Common practices and emerging technologies”, IEEE Access,
vol. 8, pp. 58443-58469, 2020.

[3] Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-Gonzalez and
Carl Wellington, “3d point cloud processing and learning for au-
tonomous driving”, IEEE Signal Processing Magazine, Special Issue
on Autonomous Driving, pp. 1-24, 2020.

[4] S. Grigorescu, B. Trasnea and T. Cocias, “A survey of deep learning
techniques for autonomous driving”, Journal of Field Robotics, vol.
37, pp. 362-386, 2020.

[5] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P.
Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J.
Zhao and K. Zieba, “End to end learning for self-driving cars”, CoRR,
vol. abs/1604.07316, 2016.

[6] M. Abou-Hussein, S. H. Mller and J. Boedecker, “Multimodal Spatio-
Temporal Information in End-to-End Networks for Automotive Steer-
ing Prediction,” in IEEE International Conference on Robotics and
Automation (ICRA), 2019, pp. 8641-8647.

[7] He, K., Zhang, X., Ren, S. and Sun, J, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, pp. 770-778.

[8] G. Huang, Z. Liu, K. Q. Weinberger, and L. Maaten, “Densely
connected convolutional networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2017, pp. 4700-4708.

[9] Zoph, B., Vasudevan, V., Shlens, J. and Le, Q. V, “Learning trans-
ferable architectures for scalable image recognition,” In Proceedings
of the IEEE conference on computer vision and pattern recognition
(CVPR), 2018, pp. 8697-8710.

[10] Chi, Lu and Yadong Mu, “Deep Steering: Learning End-to-End
Driving Model from Spatial and Temporal Visual Cues”, CoRR, vol.
abs/1708.03798, 2017.

[11] Z. Yang, Y. Zhang, J. Yu, J. Cai and J. Luo, “End-to-end multi-modal
multi-task vehicle control for self-driving cars with visual perceptions,”
in 24th International Conference on Pattern Recognition (ICPR), 2018,
pp. 2289-2294.

[12] D. A. Pomerleau, “ALVINN: An autonomous land vehicle in a neural
network”, in Advances in Neural Information Processing Systems,
1989, pp. 305-313.

[13] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based
learning applied to document recognition”, Proceedings of the IEEE,
vol. 86, pp. 2278-2324, 1998.

[14] Y. LeCun, U. Muller, J. Ben, E. Cosatto and B. Flepp, “Off-Road
Obstacle Avoidance through End-to-End Learning”, in Advances in
Neural Information Processing Systems, 2006, pp. 739-746.

[15] Alessandro Giusti, Jerome Guzzi, et al., “A machine learning approach
to visual perception of forest trails for mobile robots”, IEEE Robotics
and Automation Letters, vol. 1, pp. 661-667, 2016.

[16] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garca and D. Scara-
muzza, “Event-based vision meets deep learning on steering prediction
for self-driving cars,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 5419-5427.

[17] Binas, J., Neil, D., Liu, S. C. and Delbruck, T, “DDD17: End-to-end
DAVIS driving dataset”, arXiv preprint, arXiv:1711.01458, 2017.

[18] Hu, Y., Binas, J., Neil, D., Liu, S. C. and Delbruck, T, “DDD20
End-to-End Event Camera Driving Dataset: Fusing Frames and Events
with Deep Learning for Improved Steering Prediction”, arXiv preprint,
arXiv:2005.08605, 2020.

[19] Wu, T., Luo, A., Huang, R., Cheng, H. and Zhao, Y, “End-to-End
Driving Model for Steering Control of Autonomous Vehicles with
Future Spatiotemporal Features,” In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 950-
955.

[20] S. Hecker, D. Dai and L. Van Gool, “End-to-end learning of driving
models with surround-view cameras and route planners,” in Proc. of
the European Conference on Computer Vision (ECCV), 2018, pp. 435-
453.

[21] Chen, C., Seff, A., Kornhauser, A., and Xiao, J, “Deepdriving:
Learning affordance for direct perception in autonomous driving,” In
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), 2015, pp. 2722-2730.

[22] H. Xu, Y. Gao, F. Yu and T. Darrell, “End-to-end learning of driving
models from large-scale video datasets,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3530-
3538.

[23] A. Loquercio, A. I. Maqueda, C. R. del Blanco and D. Scaramuzza,
“DroNet: Learning to fly by driving”, IEEE Robotics and Automation
Letters, vol. 3, pp. 1088-1095, 2018.

[24] C. R. Qi, H. Su, K. Mo and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 652-660.

[25] C. R. Qi, L. Yi, H. Su and L. J. Guibas, “Pointnet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems, 2017, pp. 5099-5108.

[26] Fischler, Martin A. and Robert C. Bolles, “Random sample consensus:
a paradigm for model fitting with applications to image analysis and
automated cartography”, Communications of the ACM, vol. 24, pp.
381-395, 1981.

[27] G. Farneback, “Two-frame motion estimation based on polynomial
expansion,” in Scandinavian conference on Image analysis, Springer,
2003, pp. 363-370.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” In International Conference on Learning Representations
(ICLR), 2015.

[29] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in 2017 IEEE International Conference
on Computer Vision (ICCV), 2017, pp. 618-626.

[30] Chattopadhay, Aditya, Anirban Sarkar, Prantik Howlader, and Vineeth
N. Balasubramanian, “Grad-cam++: Generalized gradient-based visual
explanations for deep convolutional networks,” in 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV), 2018, pp.
839-847.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 716 submitted to 2021 IEEE International Conference
on Robotics and Automation (ICRA). Received October 30, 2020.


